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LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER
SOLUTIONS WITH BROAD AND ASYMMETRIC
CHEMICAL DISTRIBUTIONS

MARGIT T. RATZSCH,* DIETER BROWARZIK, and
HORST KEHLEN

Chemistry Department
"Carl Schorlemmer" Technical University
DDR-4200 Merseburg, German Democratic Republic

ABSTRACT

A solution of a random copolymer showing polydispersity only
with respect to chemical composition is considered. A model distri-
bution very flexible in its breadth and in its asymmetry is used to
describe the polydispersity. Based on continuous thermodynamics,
equations for the cloud-point curve, the shadow curve, the spino-
dal, the critical point, and the heterogeneous double critical point
are derived. The activity coefficients are calculated with the aid of
Huggins' x-parameter concept assuming x to depend linearly on the
average chemical composition of the copolymer. The influence of
the breadth and the asymmetry of the distribution on the liquid-liq-
uid equilibrium of the copolymer solution is discussed.

INTRODUCTION

Kehlen and Ratzsch [1], and later Salacuse and Stell [2], Gualtieri et al.
[3], and Briano and Glandt [4], developed continuous thermodynamics
based directly on continuous distribution functions to describe phase
equilibria of complex multicomponent systems, such as polydisperse
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810 RATZSCH, BROWARZIK, AND KEHLEN

polymer solutions, better than possible in the framework of traditional
thermodynamics.

Since random copolymers show polydispersity with respect to the
chemical composition in addition to the usual polydispersity with respect
to the molecular weight, continuous thermodynamics was generalized to
divariate distribution functions by Ratzsch, Kehlen, and Browarzik [5].
The double integrals for determining the cloud-point curve and the shad-
ow curve of a copolymer solution may be calculated analytically by using
a generalized Stockmayer distribution. Though the Stockmayer distribu-
tion is very narrow and symmetric with respect to chemical composition,
a marked influence of the chemical polydispersity on the phase equilibria
is found in many model calculations [5-8].

However, in reality, many copolymers show broad and asymmetric
chemical distributions that are not of the Stockmayer type. The present
paper aims at studying the effects of such distributions on the phase
equilibrium of copolymer solutions. To show the principle clearly, the
polydispersity with respect to the molecular weight is neglected.

CALCULATION OF CLOUD-POINT CURVE AND SHADOW CURVE

A copolymer consisting of two kinds of monomer units, a and /3, is
considered. By choosing a standard segment, the segment numbers ra and
r0, respectively, may be defined. The total segment number r and the
segment fraction Y of the a-monomer units within the molecules are
introduced by

r = ra + r0; Y = rjr (1)

For the sake of simplicity, the total segment number r is assumed to be the
same in all molecules, i.e., there is no polydispersity with respect to the
molecular weight. Thus, the chemical polydispersity of the copolymer
may be described by the distribution function W(Y) defined by the state-
ment that W(Y)dY equals the segment fraction of all copolymer species
with chemical compositions between Y and Y + dY. Therefore, W{Y)
fulfills the normalization condition

W(J)dY = 1 (2)
Jo
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LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER SOLUTIONS 811

The moments of W(Y) are defined by

(3)

For m = 1, the average chemical composition Y = yw is obtained. Con-
sidering a system containing a Solvent A and a Copolymer B, the condi-
tion for phase equilibrium between two phases ' and " reads

MY) = MY) (4)

where /x indicates the chemical potential. The phase equilibrium condi-
tion for Copolymer B holds for all Y values between 0 and 1.

The relations for the chemical potentials read

Tin (1 -RT Tin (1 - ft + 1 - rA0^- + ̂ 1 + rART In

in

+ rRTIn =B(Y) (5)

where R is the universal gas constant, 7Ms the absolute temperature, ip is
the overall segment fraction of the copolymer, and rA is the segment
number of the solvent molecules. In Eqs. (5) the first terms on the right-
hand side are standard terms independent of the composition of the
mixture considered, i.e., independent of ii and W(Y)- The second terms
are the well-known Flory-Huggins terms, and the third terms describe the
deviations from such a Flory-Huggins mixture containing the segment-
molar activity coefficients 7"A afld T B W - Expressing the chemical po-
tentials in Eqs. (4) according to Eqs. (5) and rearranging leads to

1 - * " = (1 -WapfAPA (6)

W"(Y) = yW-{Y) exp rpB (7)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
0
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



812 RATZSCH, BROWARZIK, AND KEHLEN

where pA and pB are given by

PA = <*" - * ' ) ( - - - V In 7 A + In 7 A (8)

PB = OA" ~ \O I 1 ~ In 7 B ( I 0 + In y'niY) (9)
V V

Further treatment depends on how the distribution function W(Y) influ-
ences the segment-molar excess Gibbs energy GE, where "excess" means
the deviation from a Flory-Huggins mixture, becausejn "YA and In "7B are
the partial segment-molar quantities with respect to ~GEIRT. On applying
Huggins' x-parameter concept and assuming x depends linearly on the
average chemical composition Y of the copolymer, GE is given by

GEIRT = ^(1 — -̂)x; x = c(7^(l + vY) (10)

Then the distribution function W(Y) influences G£ only through its first
moment Y. From a molecular point of view, Eqs. (10) corresponds to the
neglect of interactions between the monomer units a and )3 of the copoly-
mer [5, 7]. The parameter v is a measure of the difference between the
interactions of type Aa and of type A/3, expressed by

A«A« = «Aa - ~ («AA + * O

AWAS = MAS - - ("AA + ««J)

where WAA, uaa, u^ uAa, and M^ are interaction energies of segments AA,
aa, /3/3, Aa, and Aj3, respectively. _With the aid of Eqs. (10), the segment-
molar activity coefficients ~yA and 7B(10 read
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LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER SOLUTIONS 813

In 7B(I0 = (1 - $Mni\ + vY) + (1 - t)a{T)V{Y - Y) (12)

Upon establishing the temperature equilibrium (at constant pressure) of a
given phase ', a second phase " (shadow phase) is formed. The plot of
the equilibrium temperature T against the overall segment fraction \j/'
of the copolymer in the phase ' is called the cloud-point curve. The
plot of the equilibrium temperature T against the total segment fraction
\j/" of the copolymer in the shadow phase " is called the shadow curve.

In order to calculate the cloud-point curve and the shadow curve, the
three unknowns, T, ̂ ", and Y", have to be determined. For this purpose,
two other equations are needed in addition to Eq. (6). They result from
Eqs. (2) and (3) (with m = 1) as applied to phase " with the aid of Eq. (7):

r = r j V(y) exp (rpB)dY (13)
Jo

Y" = ^YWiY) exp (rpB)dY (14)

By using Eqs. (6), (8), (9), and (12), pA and pB may be rewritten

PA = or - w(0 - f
- (1 + vf"Wy\ (15)

PB = PBO + YpBl. (16)

where PBQ and p B r are given by

PBO = - In
rA

+ v(Y"V - TV)) (17)

PBY = a{T)vW - Y) (18)
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814 RATZSCH, BROWARZIK, AND KEHLEN

By combining Eqs. (13) and (14), Y" may be expressed by

Y" = I2/I, (19)

where

/, = ( V ( Y ) exp (rpBY)dY (20)
Jo

h = \lYW(Y) exp (rpBY)dY (21)
Jo

Introducing

x = (i - vn/(i - r> (22)

the combination of Eqs. (6) and (15) leads to

v{Y" - Y)[a{T)Y + p*a(T) + q* = 0 (23)

where p * and q* are given by

p * = — In X + 2pBr [(1 + vf') - X(l + vY")]
rA v(l - X)

- X2(l + j-f")] (24)

Finally, Eqs. (13), (16), (17), (18), (20), and (21) result in

l n +

r a(T)v(l - X) - pBY rA

+ 2^T + a(T)v(Y" - t) - -^— (KY" - ?') = 0 (25)
v 1 - X

Now the cloud-point curve and the shadow curve may be calculated in
the following way: By choosing a value for pBY, the quantities /,, and J2,
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LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER SOLUTIONS 815

and Y" may be determined with the aid of Eqs. (19)-(21). Only Eq. (25)
has to be solved in an iterative way with respect to the unknown X. The
quantity a{T) may be found as a solution of the quadratic Eq. (23):

a(T)= - | ± ^ - q (26)

where

p = p*/[p(Y" - Y')); q = q*l[v(Y" - Y')] (27)

and/?* and q* are given by Eqs. (24). Finally, using Eqs. (18) and (22), the
quantities $' and \p" result from

y = 1 ? ™ ; V' = 1 (28)y 1 ; V
cr(7>(l - X) a(7>0 - X)

If the function a{T) is specified, the equilibrium temperature may be
calculated. The essential advantage of the algorithm described is the low
expense in determining the integrals /, and I2. To obtain a cloud point,
these integrals have to be calculated only once.

In the monodisperse limit (all copolymer species possess the same
composition Y'), the described algorithm may also be applied, but in a
modified form. Then the quantities /„ I2, Y", and a(T) are given by

/j = exp (rpBr?')

I2 = Y' exp (rpBYf)

a(T) = -qVp* (29)

Of course, in this limiting case there is no difference between the cloud-
point curve and the shadow curve. Furthermore, because the segment-
molar activity coefficients depend on T and Y only by means of x. a
universal binodal x̂ WO may be found which is independent of the inter-
action parameters and Y.

CALCULATION OF SPINODAL AND CRITICAL POINT

There are two ways to obtain expressions for the spinodal and the
critical point. First, the equilibrium condition, Eq. (6) or (13), is expand-
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816 RATZSCH, BROWARZIK, AND KEHLEN

ed into a series with respect to $" about the critical point [7] by taking
Eqs. (15)-(21) into account. Equating the first-order term to zero results
in the spinodal condition. Furthermore, if the second-order term does
vanish, there is a critical point. Analogously, the third-order term leads to
a condition for a double critical point (heterogeneous double plait point).
Second, the stability theory of continuous thermodynamics [9] may be
applied to find expressions for the spinodal, the critical point, and the
double critical point. The spinodal condition obtained reads

1 _L _ 2fl(7)(l + vf)
r A ( l - V> nfr

- r[a(T)p]W?v - Y2) = 0 (30)

At a critical point, the relation

1 - - 1 • - 3r[fl(7>F(i™ - P)
rA(l -

S = 0 (31)

has to be fulfilled. Analogously, at a heterogeneous double critical point
the equation

rA(l -

+ \2fmf2 - 6Y4) = 0 (32)

holds in addition to Eqs. (30) and (31).

DISTRIBUTION FUNCTION

To perform the calculation of phase equilibria, an expression for the
distribution function W(Y) is needed. In order to study the influence of
breadth and asymmetry of the distribution function on the phase equilib-
rium, this expression has to be sufficiently flexible in these properties.
These are met by the following relation:
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T(s + t + 2) _
r(s + \)T(t +1 ) V '

where T is the T-function. The mth moment of W(Y) reads

fim) = rfr + m + IMs + / + 2)

Then the integral /, given by Eq. (20) may be expressed by

h = | > , (35)

/-o

where

s + k rpBY . , „
«t = «t-i : -ty1; k = 1, 2, . . .

^ + / + A: + 1 &
«o = 1 (36)

The integral I2 given by Eq. (21) may be expressed by

h = Sft <37>
;=o

where

s + k+l rpBr. _
+t + k + l T ' k~1'2'-"

(38)

Practically, only a finite number of terms in the sums of Eqs. (35) and
(37) has to be taken into account. Because of the rapid convergence
behavior of these sums, even for large absolute values of the quantity pBY,
only a very few terms are actually needed. In such a way, the numerical
integration may be performed rapidly and with high accuracy.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
0
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



8 1 8 RATZSCH, BROWARZIK, AND KEHLEN

EXAMPLES

In all examples considered, the parameters rA, rB, and v are given by

rA = 1 ; rB = 100; v = 1 (39)

In the simplest case a(T), and hence x(T), are assumed to be proportional
to T~x. Then, in the framework of model calculations, o(7) does not have
to be specified considering simply the functions x~W) and x~W) as the
cloud-point curve and the shadow curve, respectively. (In the monodis-
perse limit there exists a common binodal x"1^). independent of v and Y.
The demixing temperature is proportional to 1 + vY. For v > 0 (i.e.,
AuAa > Aw^; Aw^ > 0) the miscibility decreases if Y increases, corre-
sponding to the increasing number of interactions of the more repulsive
type ha).

First, the influence of the breadth of the distribution function on the
critical point and on the cloud-point curve shall be studied. To separate
the effects of the breadth from those of the asymmetry of the distribution
function, symmetric distributions (t = s) are considered.

In Table 1 the quantity F2' - Y1, which measures the breadth of the

TABLE 1. The Influence of the Breadth of the Distribution on the
Critical Quantities

00

20

10

4

2

1

0.5

0

Y*-P

0

0.0058

0.0109

0.0227

0.0357

0.0500

0.0625

0.0833

0.0909

0.1021

0.1149

0.1682

0.2972

0.4287

0.4933

0.5532

Xc'1

1.6529

1.6637

1.6709

1.6661

1.5783

1.4885

1.4705

1.4942

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
0
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER SOLUTIONS 819

distribution function, and the critical quantities \5v and Xc'1 a r e listed for
some values of the parameters s. With increasing breadth of the distribu-
tion (the monodisperse case is given by s-><x>, the critical concentration
increases in a considerable degree. The critical temperature, i.e., xc"'. at
first shows a slight increase, but then it decreases with increasing breadth
of the distribution. To illustrate, some representative examples of the
distribution functions used are plotted in Fig. 1. Figure 2 shows the
influence of the breadth of the distribution function on the cloud-point
curves. Whereas the general shape of the cloud-point curves in all the
cases considered (except s->oo) is nearly the same, the equilibrium tem-
perature increases with increasing breadth of the distribution function

W(Y)

FIG. 1. Symmetric distributions fors = 0, 1, 2, 4, and 10.
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820 RATZSCH, BROWARZIK, AND KEHLEN

1.8 •

1.7-

1.6

0.1 0.2 0.3 cp

FIG. 2. Cloud-point curves for different breadths of the symmetric distribu-
tion, critical point (•).

(decreasing miscibility). In the case of broad distributions, the critical
concentration is very large. (For 5 = 0 and s = 1, the critical point lies
outside the concentration range considered in Fig. 2). Of course, there is a
corresponding effect on the shadow curves as shown by comparing Figs.
3(a) and 3(b).

Considering a cloud point, there is an equilibrium between the phase',
characterized by the overall segment fraction ty of the copolymer and by
its mean chemical composition Y, and of the phase ", characterized by
the quantities \p" and Y", Considering the quantity Y" — Y (in the cases
discussed above, Y = 0.5) as a function of \p', information about the
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LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER SOLUTIONS 821

1.7 \

1 . 6 •

1.5

0.1 0.2 0.3 cp

X"1!

1.7

1.6

0.1 0.2 0.3 cp

FIG. 3. Phase diagram for a symmetric distribution with (a) s = 10 and with
(b) s = 2: cloud-point curve. ( — ) , shadow curve (- -), spinodal (- • -), critical
point ( • ) .
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822 RATZSCH, BROWARZIK, AND KEHLEN

fractionation of the copolymer with respect to its chemical composition
may be obtained. As expected, there is an increase of the fractionation
effect with increasing breadth of distribution, i.e., decreasing value of s
(Fig. 4).

The influence of the asymmetry of the distribution function on the
phase equilibrium shall now be studied. To separate the effects of the
asymmetry from those of the breadth of the distribution, some distribu-

Y-Y

0.3

0.2

0.1

-0.1

s = 1

0.1

FIG. 4. Fractionation effect Y" - Y for different breadths of the (symmetric)
distribution.
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LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER SOLUTIONS 823

tion functions with the same standard deviation y<2) — Y2 but different
asymmetries are considered. For a given symmetric distribution function
with the parameters s = t = s*, the parameters s and / of an asymmetric
distribution function with the same standard deviation may be calculated
by

5 = ±1
2s* + :

t = T - s (40)

applying different r values. In the limit r = 2s*, the symmetric case is
obtained. If T decreases, the asymmetry of the distribution function in-
creases. Furthermore, the relations

Sx = t2; s2 = tx (41)

apply where the subscripts 1 and 2 correspond to the two possible values
of 6. If 6 = + l , t h e n f > 0.5, and if 6 = - l . t h e n f < 0.5. Therefore,
the quantity r measures the degree of asymmetry and the sign of 5 gives
information about the direction of asymmetry. To illustrate, Fig. 5
presents some examples of distribution functions W(Y) with the same
breadth (measured by 5*) but different asymmetries.

In Table 2 for s* = 4, the critical quantities for different values of T
and 6 are listed. For Y > 0.5, increasing the asymmetry of the distribu-
tion function results in a decrease of the critical concentration $c and in
an increase of the critical x"1 value. Therefore, such an asymmetry re-
duces the effect arising from the breadth of the distribution function.
However, there is only a small influence. On the contrary, for Y < 0.5
the critical concentration ^c increases and the critical x"1 value decreases
drastically with increasing asymmetry of the distribution function. To
illustrate, some of the cloud-point curves corresponding to the distribu-
tions shown in Fig. 5 are represented in Fig. 6. Again, in all cases the
phase separation temperatures are higher than in the monodisperse limit
considering the same average chemical composition, i.e., the solubility of
the copolymer is decreased by the chemical polydispersity. The effect of
the standard deviation may be decreased (8 = +1) or increased (5 = -1)
by the asymmetry of the distribution function.
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824 RATZSCH, BROWARZIK, AND KEHLEN

FIG. 5. Asymmetric distributions with the same standard deviation (5* = 4).

TABLE 2. The Influence of the Asymmetry of the
Distribution on the Critical Quantities for s* = 4

T

6

7

8

7.5

7

6.75

6

+ 1

+ 1

± 1

- 1

- 1

- 1 .

- 1

0.1291

0.1368

0.1682

0.2370

0.3668

0.5869

0.9018

Xc~l

1.6803

1.6791

1.6661

1.6061

1.4426

1.1009

0.4601
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826 RATZSCH, BROWARZIK, AND KEHLEN

In Fig. 7 the fractionation effect is shown for different asymmetries of
the distribution function. Again, all distribution functions possess the
same standard deviation y*2) — Y1. Two asymmetric distribution func-
tions (T = 6, 5 = ±1) characterized by the same absolute value | Y —
0.51 but different in the direction of the asymmetry are compared with
the symmetric distribution function (T = 8). The largest effect is found
for T = 6, 5 = —1 arising from the very large critical concentration.

In the last examples the effects of distribution functions, which are
broad and asymmetric, were considered. The influence of asymmetry on
the phase behavior for narrower distribution functions shall now be stud-
ied. For this purpose the parameter 5* is chosen to equal 10. In Figs. 8(a)
and 8(b) the critical quantities ^c and xc"' are plotted against T for 5 =
- 1 . For 8.082 < T < 11.466, three critical points occur, and at least one
of them is stable. For T = 9.7865 and T = 11.4115, heterogeneous dou-
ble plait points occur that separate the branch of stable critical points and
the branch of unstable critical points. Whereas the asymmetry corre-
sponding to Y < 0.5 essentially influences the phase behavior, the effect
of the asymmetry corresponding to Y > 0.5 is very small. To give an idea
of the degree of asymmetry connected with the T values considered in
Figs. 8, some representative distribution functions are plotted in Fig. 9.

In Fig. 10 the influence ofthe asymmetry of narrower distributions on
the cloud-point curve is shown. The results are similar to those of Fig. 6.
However, for T values leading to the occurrence of three critical points,
the phase behavior is much more complex. The cloud-point curve splits
into different branches which may be stable, metastable, or unstable. In
such cases a three-phase point often occurs, resulting in a break of the
stable part of the cloud-point curve [7, 10, 11]. In Fig. 10 this behavior
can be seen for T = 9.7865, 5 = — 1. The slopes of the two plotted (sta-
ble) branches of the cloud-point curve differ at the three-phase point. In
order to explain this, Fig. 11 shows that part of the cloud-point curve
situated near the three-phase point in detail. The heterogeneous double
plait point occurring for T = 9.7865 is located exactly in the cusp point
formed by the metastable and the unstable branches of the cloud-point
curve.

Finally, in Fig. 12 the fractionation effect for different asymmetries of
distribution with the same (smaller) breadth is shown. The very asymmet-
ric case T = 1 results in a considerable fractionation effect. The three-
phase point for T = 9.7865 corresponds to a finite discontinuity of the
fractionation effect.
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